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Received 28 August 1991 

Abstract An infinite system for the moments of a particle moving in a potential with two 
minima under the action of fluctuations is considered. A class of solutions is found for 
which a divergent series can be summed up to a simple transcendent function. It is shown 
numerically that the true solution belongs to this class and conditions are ret to define the 
solution uniquely. 

Introduction 

The present paper analyses the transient behaviour of the moments (x"( t ) )  for the well 
known Langevin equation 

X =dx - x3 + 7 (1) 

where q is a white noise with power N (from Stratonovich's viewpoint). This particular 
equation is, of course, of special importance in fluctuation theory because it has so 

thus to model a wide range of bistable physical systems. The corresponding Fokker- 
Planck equation for the transient probability density is 

frequerrt!y been .sed to describe xise-drive!! !%?!ion In I doub!e-w!! potentia!, m d  

N J2 JP  J 

Jf Jx 2 Jx 
(dx - x3)P+- 7 P. _-  - -- 

The number of works devoted to this and related problems is enormous. Nevertheless, 
an analytic solution of (2) uniformly valid for f~ (0, OD) has not yet been obtained. 

All previously obtained numerous approximate formulae hold, at best, in limited 
parts ofthe (d, N) parameter space or  only in limited time intervals given by a particular 
timescale. The aim of the present paper is t o  report significant progress towards an 
analytic solution, based on a new approach. 

In the present paper we adhere to the viewpoint of Graham and Schenzle [ I ]  and 
Brenig and Banai [Z] who treated the exactly solvable system by the Carleman 
embedding method, i.e. writing an infinite chain of equations for the moments of the 
system coordinate. They have shown that in order to obtain correct results the series 
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in the form of which the expressions for the means are written cannot be (truncated) 
because of their divergence, but must be convolved to finite expressions, i.e. they must 
be subjected to summation. The above-mentioned works consider a problem whose 
solutions are known to a priori, but it seems that on these lines other problems could 
be solved too provided that a suitable method of diverging series summation is 
proposed. 

Trying, however, to investigate problem ( 1 )  by studying an infinite chain of equations 
.-. for (x") we face a serious difficu!ty-name!y !ha! correspondence between !1,2! m d  
the infinite system is embedding but not equivalence. In other words, the infinite chain 
of equations for (x") is a more general object than (2) and it is not enough to set the 
initial values of the moments (%"(to))  in order to determine (x"(r)) uniquely. This is 
not surprising since, in the form of an infinite chain of equations, this task is nothing 
but the famous moment problem which, as is very well known, is not resolved uniquely 
[3] without some additional conjectures about the distribution function. 

It is shown explicitly in the present paper that one needs more than initial conditions 
for the moments. Choosing additional conditions in a special way, it is possible to 
single out a special class of three-parameter solutions which on the one hand satisfy 
the infinite system of equations for moments ( ~ " ( f ) ) ,  and on the other hand admits 
explicit summation to some transcendent function that coincides with the true solution 
provided the free parameters are properly chosen. An excellent correspondence of the 
analytical solution to numerical results is demonstrated. 

1. Writing formal expressions 

Now, we are interested in the time behaviour of conditional moments 
I_, P ( x ,  f ;  x,, fo)xn dx = x.(xo, to) (for obtaining unconditional means one should 
specify the initial distribution Po(xo, to) and average x. with this distribution over the 
initial data). For the subsequent expressions to be less awkward, however, all the 
calculations will be made only for x,. For other odd n, all the formulae are analogous. 
For even n the formulae are slightly different due to the appearance of an 

the proposed approach is suitable for this case as well. It is also interesting to consider 
the odd moments specifically because the functions must have different limits 
limN+o limz+m and Iim,+- limN+o. This can easily be seen from the form of the solution 
for equation (1) when q = 0 

m 

inhomogeneous term in the infinite !ine2r system of di!krenti2! ecptinns. Never?he!ess, 

x=xoexp{dt}[l+x~(exp{2 df)-l)d-']-1'2 (3) 

and from the type of the stationary distribution function obtained from (2 )  

P,, = const' exp{(dx2 -x4/2)/N}. (4) 

For d > 0 P,, has two maxima symmetric about x = 0 at points +d"2, and all the 
stationary odd moments (Iim,+- x2,,+,(N, 1 ) )  must, therefore, be equal to zero, and 
hence limN,o lim,-, N, f) = 0. In contrast, it follows from formula (3) for x = 
lime+- x = Iimt+- limN+o x, that the limit value depends on the sign of the initial 



Method of divergent series summation 6735 

position x, (for x,>O xs,= d"', at x,<O x,,= -d-"2). The numerous approaches 
proposed for solving this and similar problems have not often yielded correct limit 
transition. 

Multiplying equation (2 )  by x2"+' ( n  = 0, 1 , .  . .), integrating with respect to x, and 
taking into account the condition that P is zero at infinitely remote boundaries, we 
obtain a continued infinite system of linear differential equations for odd moments: 

0 

[.y=(G 0 N ( Z n + l ) n  . . .  -3 ( 2 n f l ) d  . . .  - ( 2 n + l )  . . .  . . .  0 ](?). x2"+, ( 5 )  

-3N p - 3 d  1 0 3 ][yj i") r 

Pl"+l  

. . .  . . .  . . .  . . .  . . .  . . . . . .  

Since, as mentioned above, we are interested in conditional moments, we choose initial 
conditions for the form 

x2.,,(O) =.:"+I. (6) 

By taking the Laplace transforms of both parts of the new system, we obtain an infinite 
algebraic system of linear equations for the Laplace images: 

. . .  . . .  . . .  . . .  . . .  = . i ( p ) i ( p ) =  

0 - N ( Z n + l ) n  p - ( Z n + l ) d  ( 2 n + l )  0 G n + l ( p )  %+!W 
\ . . . I  \ I ' \  " '  I 

(7) 

. . .  . . .  . . .  . . .  . . .  

In the case of N = 0, Graham and Schenzle [ l ]  and Brenig and Banai [2] have solved 
system (7) by formally inverting the infinite matrix A. In the case of N # 0, inverting 
infinite matrix is not an obvious operation. It is useful, therefore, to  find out what this 
operation corresponds to from the point of view of the general theory of difference 
equations. It is well known that the general solution for three-term recurrence relations, 
infinite system (7) among them, can be expressed as 

(8) 
-inhom L+, = c,?;:Tl,,+ c2?;:T1,2+x2"+1 

where x;:::,; ( i  = 1 ;  2 )  are linearly independent solutions of the homogeneous recnr- 
rence relations and 2;::p is a particular solution of the inhomogeneous recurrence 
relations, C ,  and C, are constants determined from the initial conditions which, 
naturally, will depend on the choice of SF::?. If SF::? is chosen such that 
{ 2 v i ) - ' $  i 2 . + , ( p )  dp = q n + , ( 0 ) ,  i.e. for the initial conditions to be taken into account 
only by the inhomogeneous term of system (31, we obtain C , ,  C, = 0. We can seek a 
particular solution for SY::: in terms of the Green function 
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where G2,,+,,* is the solution of 

In the case of N = 0, G2n+l ,k  may be chosen as follows: when n S k G2n+l,k is a solution 
of the finite-dimensional system 

and when n > k 

G2nci .k  0. (12) 

It is easy to verify (see [ l ,  21) that the G2n+l.k foucd in this way are nothing else but 
columns of the formally inverted infinite matrix A. It should be stressed once more 
that (11) and (12) give a particular solution of system (7) which is singled out of the 
whole infinite set of solutions of (7) by two requirements: 

(1) An inverse Laplace transformation of ?;:!r(p) satisfies the initial data 

(2Ti1-I f ep'G2.+I.k(p) dpl,=o= 6.k ( 1 3 ~ )  

and 

(2) There are no elements growing with the number n in the column G2n+,,k, which 
will inevitably appear in any other particular solution. 

As a result, this solution corresponds to our intuitive notions of inverse of matrices, 
but it is achieved at high cost-series (9) diverges in the vicinity of an infinite number 
of points on the complex plane of p (every G2n+,,k has k poles located in the right 
half). Therefore, we have to either choose G2n+,.k in a different form or subject series 
(9) to a summation procedure. Graham and Schenzle [ l ]  and Brenig and Banai [21 
have chosen the second way and have summed up divergent series (9) in the case of 
N = 0. The aim of this work is to clarify what can be achieved by doing this in the 
case of N # 0. 
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Writing out the system (10) for G2n+,,k in an explicit form yields: 

(d-P)G, ,k  - G3.k = o  
NGi,k+(d - P / ~ ) G S . ~  - 4 . k  = O  

(14) 

kNG2k-i.t + ( d  - ~ / ( 2 k +  1 ) ) G z k + i , k -  Gx+s,k=-1/(2k+ 1 )  

( k  + 1)NG2x+i,lr+ (d - P /  (2k f3))G~k+3,k-  Gmt5.k = 0. 
Now it is clear that it is impossible to put all G2i+,,k = 0 when i >  k as in the case 
N = 0, because the finite dimensional system remaining for Gzj+,,k with i S k will have 
no solution. It is possible, however, to find the following family of particular solutions 
for G2i+l.k by expressing G2k+3.k as a linear combination of G2j+ l ,k ( iSk) ,  i.e. 

k-1 

"IO 
Gzk+s.k=- C n ( P ) G 2 n + i , k  (15) 

and substituting this into (14). This ansatz allows ( 1 )  the finite system to be solved 

( d  -P)Gi,k- 4 . k  = o  
NG1.k + ( d  - P / 3 ) G u  - G s . k  = o  

(16) 
k - l  

kNG2k-i.x+(d-P/(2k+ 1 ) ) G z k + , , k +  1 cn(p)G2,+,.,-1/(2k+ 1) 
n=o 

and (2) the infinite system to be solved 

( i +  1)NG2i+i.k+ ( d  - ~ / ( 2 i + 3 ) ) G 2 : + ~ . , -  GZi+i.k = 0 ( i > k )  (17) 

uniquely with respect to G2i+,,k( i > k) since (17) ,  being a three-term recurrence relation, 
needs two constants to be uniquely solved (Jones and Thron [4]). 

So, G,,+l,k for is k depend on k arbitrary functions s ( p )  which can naturally 
depend on Laplace variable p and other parameters of the problem. 

It is worthwhile noting the difference between this case and the case of convergent 
recurrence relations (Risken [ 5 ] ) .  In the latter, a solution is achieved by truncating 
(17) for some large k, which is absolutely impossible in the case of divergence [ l ,  21. 
However, even in cases where truncation is possible this solution is only a particular 
one which corresponds to some special choice of c j ( p )  in (15). This means that other 
(perhaps formal) solutions of the same three-term recurrence relations exist, since (15) 
is admissible in all cases. 

2. A class of particular solutions 

It is obvious that since arbitrary constants q ( p )  in (15) are generic to infinite systems 
like ( 1 4 ) ,  they should be determined from considerations which do not depend on any 
information about G2,+I,k which is possible to extract manipulating the system (14). 
We thus have the following plan. First, show that it is possible to choose arbitrary 
constants c i (p )  in such a way that 

m 

x2,+,( t )= (27ri)-' e"?;".","(p) dp = (27ri)-' e'' 1 G2.+1.k(p)xk(0) dp (18 )  f f k = O  
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can be summed to a function which belongs to a class which is much narrower than 
all possible solutions of (14). Next, using numerical simulations, we show that the tme 
solution can be found inside this class for all values of parameters. We obtain in this 
way a formula which is uniform with respect to t E (0, m) and therefore solve the old 
problem of combined description of (x2"+J in different time domains. It is worth 
mentioning here that the scaling approach by Suzuki [ 5 ]  solves this problem only 
approximately for a certain set of parameters and only for even moments. 

I.et us c h ~ ~ s e  c, for i < k independent of p, and ck = $ - C A P  (k> 1)  (&! c, 2:e 

naturally some functions of Id, N)).  Making this choice we have k +  1 arbitrary 
constants and can vary them in such a way that all k roots of 

/p:d 1 0 \ 
3 

-N(2n + l ) n  -e._, 

. . .  
(1 + c!)p-(2n + l)d - c: 

Dk(p)=det  

are situated in prescribed places. The possibility to do this follows from the Wiet 
theorem stating one-to-one connection between roots of a polynomial and its 
coefficients. Specifying the roots we can find coefficients, which in our case are ci. 
Specifically, we are interested in a class of functions where all roots of D k ( p )  in (18) 
are real and positive, the lowest one being A, and the distance between each pair being 
equal to 2d*. 

forthcoming 
only. Equations for arbitrary i can be obtained in the same manner. 

To make all formulae more concise we make calculations for 

For the above-mentioned choice of ci we obtain G , , * ( p )  of the form 

- (-1)*(2k- I)!! - ( - l )k(2k-l)!!  
D2k+l( p )  (.c:+ I)II:l,* ( p  - ( A  +2nd*))' G 1 . k  = 

Substituting (19) into (18) and calculating tbe reverse Laplace tranformation one 
obtains 

=I. -.U e v , . ~ i t i r ~ + o  - - Y L I . . , L  &x--y,-- v. p u n ~ i ~ * l i - - l \ ~ * - 1 1 - - l j 2  . I  ' I -  -1 (20) 

g, = C L +  1 .  Thus we have obtained a family of rather simple transcendental functions 
(20) which satisfy the infinite chain of equations (7) and are dependent on three 
arbitrary functions of {d, N }  - A, g, and d*. 

3. Constant specification 

There is no guarantee that the true moment (xI) belongs to the family (20). We hope, 
however, that we can specify A, g, and d* in such a way that it does. In order to do  
that we need to use information which is independent of (7). 

We know from the eigenvalue decomposition [6 ,7]  of the solution of (2) 

where X.(x) are eigenfunctions of the elliptic operator in the right-hand side Of (21, 
P,,(xo) is the stationary probability distribution and A. are corresponding eigenvalues 
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( A u  = 0), such that 

(XI),+- - [ dx x X,(x)X,(x,) exp{-A, t}/Ps,(xu). (22) 

In order for (20) to have the correct behaviour at t+m we have to choose 

- A t  d*  = A ,  (23) 

and 

(d*/gJ”’= [ dxxX,(x)X,(x,)/P,,(x,). (24) 

The third necessary condition one can obtain from the first equation of system ( 5 )  

( i l ) l t -u=dXo-x~= (d*-A)xu-g& (25) 
is nothing but the requirement for (x,) to have correct time behaviour at t + O .  So, 
parameters A, g, and d*  can be expressed through the first eigenvalue and eigenfunction 
of the correspondent Fokker-Planck equation. 

4. Numerical results 

We can now address the last and most important question-how close (20) is to the 
true solution of the moment problem ( 5 ) ?  

We have carried out extensive direct numerical simulations of stochastic equation 
(1) for avast variety of parameters: low, medium and high noise intensity, low, medium 
and high starting position. The numerical algorithm proposed in [9] was used. The 
most representative results are summarized in figures 1 and 2. For low values of noise 

5 d 

-analytical formula (20) 
0 

0 numerical results N=OS 
0 numerical results N=I.O 

- >  

- 2  

0 1 2 5 4 5 6 7 8 9  

time 
Figure 1. Average position depending on time; high and medium noise intensities. Time 
s teplO-‘ ,  number of tmjectories-lO*’. 
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? 

analyt ica l  formula (20)  h -  0 n u m e r i c a l  results, N = I O - ’  

0 10 20 
time 

Figure 2. Average position depending on time; low noise intensities. Time s t e p l o - ‘ ,  
number of trajectoriea-10*5. 

intensity (A’<< 1) the result 

A ,  =21’2n-’d exp{-dz/2N)[1 -3N/4d2]  

of Larson and Kostin [7] was used. For large values of noise intensity no results for 
A ,  are known, so, A, g, and d* were treated as fitting parameters. They have a very 
clear physical meaning. A, and d*  are responsible for true time asymptotic behaviour 
at f -t m and t + 0, respectively, and g, for the position of the maximum (for low noises) 
or the point where the decay constant is changed. We can also regard (20) as a 
modification of (3)-the formula for xI without noise-due to action of fluctuations. 

The g, dependence on starting position xu deserves a special comment. As is clear 
from figures 1 and 2 there must exist a value of xo=xil  which gives rise to exact one 
exponential decay with relaxation constant equal A , .  It  is easy to find this value 
from ( 2 5 ) :  

x i !=  (d+Al)”* (27) 

which is the requirement for (xI) to have A I  as relaxation constant close to t = 0. At 
this point d*  and g, must be connected by the relation 

d*  = gxxi. (28) 

Returning to equation (20), we see that two combinations of d* and g, are possible: 

d*  = g, = 0 

d*  = g, = (30) 

(29) 

and 

hut of course d* /g ,  =xu. 
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Numerical calculations show that (29) is realized to the left of xo = ~ $ 1  and (30) tn 
the right. 

5. Discussion 

Ecp~t ion  (26) fer A i  stites !hit the !ewest no~?-ze~e e i g e n v a ! ~ ~  cannet be obtzined IS 
a solution of any truncated finite system (18), since the roots of D,,(p) are polynomial 
functions of N. However, all coefficients in the Taylor expansion of A ,  (18) are 
identically zero. This is another manifestation of the arbitrariness in the solution of 
the infinite chain (5). On the other hand, an excellent agreement between analytical 
formula (20) and numerical simulations indicates that (20) is very close to an exact 
solution. 

Any deviation from (20) may be found most probable for very low noises or in the 
vicinity bf xtl where special measures should be taken to guarantee high precision. In 
this case we can improve (20) by choosing ck as polynomials in p, and defining 
coefficients of the polynomials in such a way that information about higher eigenvalues 
(requirement for the right behaviour at infinity) and higher derivatives at t = 0 (the 
right behaviour at short time) would be taken into account. 

Figures 1 and 2 show that the dynamics of the moments consists of two distinctively 
different regions with different relaxation rates. The first part corresponds to the time 
scale when the non-stochastic behaviour dominates. The second part is determined by 
A ,  (figure 5 ) .  i.e. mainly by fluctuations. 

The values of moments at the instant when one relaxation constant changes for 
another are strongly dependent on noise intensity and initial position. It is function 
g, that is responsible for the correct position of this point. It is evident from figures 
3 and 4 that the most dramatic changes in the deterministic dynamics caused by the 
noise take place for starting positions near the top of the potential (low values of xo). 
It is quite interesting to point out that, starting from the barrier, the system never 

w" 6 ;Fi 
2 - 1  

- 2  

- 3  

- 4  

- 5 1  ' ' ' ' ' ' ' ' ' 1 

- - 
w 

0.0 0.5 1.0 1.5 2.0 2.5 

XO 

Figure 3. Typical g, dependence on starting position. 

l 0 O I -  10 

0.1 ' 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

N 

Figure 4. g, dependence on noise intensity. 
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I I 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

N 

Figure 5. Dependence of the first eigenvalue on noise intensity 

forgets initial conditions-lines in figures 1 and 2 are parallel to infinity. This is the 
peculiarity of systems prepared in some unstable state. 

This approach allows the construction of time-uniform solutions for the moments 
of more general nonlinear systems in multistable situations (infinite chains of equations 
which normally lead to divergent series) provided additional (besides initial conditions) 
information about the system is known. 
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